
Python Learning Materials
Release 0.0.1

Simon Kerr

Nov 28, 2021

CONTENTS:

1 Data Structures: Sets 1

2 Data Structures: Lists 13

3 Data Structures: Dictionaries 17

4 Data Structures: Linked List 19

5 Descriptor Protocol 23

6 Virtual Subclassing 35

7 Iterator Protocol 39

8 Shallow & Deep Cloning 43

9 Context Managers 45

10 Collections: namedtuple 51

11 Positional and Keyword arguments 57

12 Regular Expressions 59

13 Concurrency: Threading 65

14 Pass By Assignment 67

15 String Methods 69

16 Indices and tables 73

i

ii

CHAPTER

ONE

DATA STRUCTURES: SETS

Python sets are:

• Unordered, non indexable, distinct immutable (hashable) elements.

• Come in two flavours set (mutable) & frozenset (immutable).

• Sets cannot contain other sets as they are not hashable, they can contain frozenset instances.

• Sets offer quick membership testing in and removing duplicates from other collections.

• Sets support a whole host of mathematical operations (set theory) such as union & intersection etc.

1.1 Sets: Instantiation

Python sets can be created in a number of different ways:

simple set() constructor:
empty_set = set()
set from any iterable:
set_from_iter = set(range(1, 10))
set using the braces syntax:
set_braces = {"one", "two", "three"}
set using a set comprehension:
set_comp = {n for n in range(20) if n % 2 == 0}

Care is advised when using the curly braces, often when trying to create an empty set, subtle bugs can be introduced
as python treats {} as a dict.

type({}) # dict

Sets themselves are not immutable and thus, not hashable so this means that sets cannot store sets within themselves,
another build in data structure is the frozenset which can be used as elements inside sets themselves:

s = {{1,2}, {3,4}}
TypeError: un-hashable type: `set`
frozen = frozenset({1,2})
>>> frozenset({1,2})

More can be found about frozenset later in the documentation.

We touched briefly on sets being unable to add non hashable elements, in python both list and dict are also mutable
and thus, neither can be added to a normal set:

1

Python Learning Materials, Release 0.0.1

s = {[1,2,3]}
TypeError: un-hashable type: `list`
s = {dict(a=1)}
TypeError: un-hashable type: `dict`

However, because the set() class permits building a set from an iterable and both list and dictionary are iterable (dict
over keys by default), then populating a set from both of the collections is possible:

s = set([1,2,3,4,5])
{1, 2, 3, 4, 5}
s = set(dict(a=1, b=2, c=3))
{'a', 'b', 'c'}

1.2 Sets: Distinction

We mentioned previously that sets must contain hashable elements only, this is because similarly to dictionary keys,
sets use the hash value of the object it is attempting to store internally. This is why in checks are extremely fast in sets,
they are backed by a hash table. In order to be able to store your custom objects in a set (or alternatively use them for
dictionary keys) you can implement two magic methods, __hash__ and __eq__ respectively.

By default, user defined objects have the following in python:

• an implementation of __hash__.

• an implementation of __eq__ which results in no two instances being equal.

class Example:
def __init__(self, x: int) -> None:

self.x = x

e = Example(100)
e2 = Example(100)
hash(e) # 108032011057
hash(e2) # 108032014237 (different)
e == e2 # False
{e, e2} # {<__main__.Example at 0x192735ab310>, <__main__.Example at␣
→˓0x192735b79d0>}

By default this permits us to store instances of Example in a set by default as highlighted above. In order to use our
own user defined objects in sets effectively, we should implement both the dunder __hash__ and __eq__ methods to
consider two instances of Example equal.

from __future__ import annotations # __eq__ `other` type hint of the class␣
→˓itself

class ImprovedExample:
def __init__(self, x: int) -> None:

self.x = x

def __hash__(self) -> int:
return hash(self.x)

def __eq__(self, other: ImprovedExample) -> bool:
(continues on next page)

2 Chapter 1. Data Structures: Sets

Python Learning Materials, Release 0.0.1

(continued from previous page)

note: returning `NotImplemented` here tells python to try the␣
→˓reflected operation on `other`.

if not isinstance(other, type(self)): return NotImplemented
return self.x == other.x

Now we are able to store instances of ImprovedExample in both sets and in dictionaries as keys:

one, two, three = ImprovedExample(100), ImprovedExample(200),␣
→˓ImprovedExample(100)
{one, two, three} # one == three & hash(one) == hash(three) thus only 2 are␣
→˓stored (distinct)
"""
{<__main__.ImprovedExample at 0x1927465c490>,
<__main__.ImprovedExample at 0x1927465c880>}
"""

** If a class does not implement dunder __eq__, it should never implement dunder __hash__. **

1.3 Sets: Method resolution order

Pythons collections.abc.Set MRO is described below:

from collections.abc import Set

Set.mro()
"""
(collections.abc.Set,
collections.abc.Collection,
collections.abc.Sized,
collections.abc.Iterable,
collections.abc.Container,
object)

Set inherits from `Collection`
`Collection` inherits from `Sized` which provides len(set).
`Collection` inherits from `Iterable` which allows sets to be iterated over.
`Collection inherits from `Container` which allows sets to perform `in` checks␣
→˓via `__contains__`.
and lastly, everything inherits from `object`.

`Set` inherits a lot of additional capabilities through its mixin methods:
* __le__
* __lt__
* __eq__
* __new__
* __gt__
* __ge__
* __and__
* __or__
* __sub__
* __xor__

(continues on next page)

1.3. Sets: Method resolution order 3

Python Learning Materials, Release 0.0.1

(continued from previous page)

* isdisjoint()

A lot of these mixin methods will be discussed later in depth and how objects
can slot right into pythons data model and be considered pythonic.
"""

1.4 Sets: Operations I - Basics

Many operations supported on other data structures do not make logical sense for sets, however sets themselves offer a
very robust set of operations to align them nicely with sets in mathematics. Some functionality not supported by sets
are (that of sequences) like slicing a set, or finding the index of a given element within the set.

s = {1,2,3,4,5,6}
s[1:3]
TypeError: set object is not subscriptable

s = {5,4,3,2,1}
s.index(4)
AttributeError: set object has no attribute: index

In order to fully understand the power of sets, we need to understand the distinct differences between three things:

• object methods

• object operations

• augmented operations (we will touch on this later on).

Almost all the functionality of python sets can be performed in two main ways. Via set instance methods, for example:

s = {1,2,3}
s.union({3,4,5}) # Method invocation -> {1,2,3,4,5}

Alternatively, as we touched on earlier, through various mixin methods implemented on Set, the following is also
supported:

one = {1,2,3}
two = {3,4,5}
one | two # Operation invocation -> {1,2,3,4,5}

Notice how the duplicate 3 entry in both cases is deduped, a simple trait of sets (to remove duplicates). Both examples
above result in (almost) the same thing happening, functionally it is the same, however operations tend to be slightly
faster, this is outlined below:

import dis
one = {1,2,3}
two = {3,4,5}
dis.dis("one.update(two)")
"""
1 0 LOAD_NAME 0 (one)

2 LOAD_METHOD 1 (update)
4 LOAD_NAME 2 (two)
6 CALL_METHOD 1

(continues on next page)

4 Chapter 1. Data Structures: Sets

Python Learning Materials, Release 0.0.1

(continued from previous page)

8 RETURN_VALUE
"""

dis.dis("one | two")
"""
1 0 LOAD_NAME 0 (one)

2 LOAD_NAME 1 (two)
4 BINARY_OR
6 RETURN_VALUE

"""

In the above example we can see two additional bytecode instructions: LOAD_METHOD and CALL_METHOD. For
a real world bench mark, lets perform the same task (getting the union of the above two sets) to see the difference (20
million times).

import timeit
timeit.timeit("one.union(two)", setup="one={1,2,3}; two={3,4,5}", number=20_
→˓000_000)
4.246593700000005 (4.2 seconds)
timeit.timeit("one | two", setup="one={1,2,3}; two={3,4,5}", number=20_000_000)
3.168324699999971 (3.1 seconds)

While negligible it is important to understand that operator approaches are often faster. There are however a few subtle
differences / caveats to be aware of.

• when using the method based approach, e.g union() any iterable can be provided and python will
handle it

• when using the operator based approach, e.g | all objects must be of type: set.

s = {1,2,3}
s.union([2,4,6,8])
{1, 2, 3, 4, 6, 8}
s | [2,4,6,8]
unsupported operand type(s) for |: `set` and `list`.

By default, both the methods and basic operators return a new set instance. We briefly spoke about augmented opera-
tors, these can be used to modify set s in-place, more on that later.

1.5 Sets: Operations II - Intermediate

We touched briefly on the union() method of sets, now we will outline all the available functionality including appro-
priate venn diagrams for various operations.

methods = tuple(attr for attr in dir(set()) if "__" not in attr)
"""
('add',

'clear',
'copy',
'difference',
'difference_update',
'discard',

(continues on next page)

1.5. Sets: Operations II - Intermediate 5

Python Learning Materials, Release 0.0.1

(continued from previous page)

'intersection',
'intersection_update',
'isdisjoint',
'issubset',
'issuperset',
'pop',
'remove',
'symmetric_difference',
'symmetric_difference_update',
'union',
'update')
"""

Method: add(elem):
• Description: adds a single element (elem) into the set, if elem is already a member, this does nothing.

• Operator equivalent: Not Applicable

s = set()
s.add(100)
{100}

Method: clear():
• Description: Removes all elements from the set

• Operator equivalent: Not Applicable

s = set(range(10))
{1,2,3,4,5,6,7,8,9}
s.clear()
set()

Method: copy():
• Description: Creates a shallow copy of the set

• Operator equivalent: Not Applicable

s = {1,2,3}
s2 = s.copy()
s == s2 # True
s is s2 # False
s.add(4)
s {1,2,3,4}
s2 {1,2,3}

Method: difference(*other_sets):
• Description: Return a new set of the difference of this set and *other_sets.

• Operator Equivalent: -
• Notes: Difference is calculated left <- to right -> when multiple *other_sets are provided.

• Notes: Difference is basically, items in x but not in y or z -> x.difference(y,z) : x | y | z

• Notes: As always, operator invocations must be of type: Set, difference() will work with iterables.

6 Chapter 1. Data Structures: Sets

Python Learning Materials, Release 0.0.1

x = {1,2,3}
y = {3,4,5}
x.difference(y)
{1,2}

When we compute the difference between one or multiple sets, we are working from left to right and basically subtract-
ing any elements from the next to be checked set from the set that we previously built, here is a documented example
using 3 sets:

one = {1,2,3}
two = {3,4,5}
three = {2,3}

Generate three sets, two contains 1 number also in one, three contains two␣
→˓numbers in one

Check one against two using method and operator, both are equivalent except␣
→˓for speed.
one.difference(two)
{1,2}
one - two
{1,2}

Why? because `3` is in one and two, so we discard it, left to right is␣
→˓important here:

two.difference(one)
{4,5}
two - one
{4,5}

Now when we also check the difference when `three` gets involved:
one.difference(two, three)
{1}
one - two - three
{1}

Python implements this behaviour at the operator level by implementing __sub__:

def __sub__(self, other):
if not isinstance(other, Set):

if not isinstance(other, Iterable):
return NotImplemented

other = self._from_iterable(other)
return self._from_iterable(value for value in self if value not in other)

from_iterable is just a class method to build a set instance from any␣
→˓iterable.

As we touched on previously, remember when using operator syntax, sets must be passed:

s = {1,3,5}
s.difference([3], [5])
{1}

(continues on next page)

1.5. Sets: Operations II - Intermediate 7

Python Learning Materials, Release 0.0.1

(continued from previous page)

s - [3] - [5]
TypeError: unsupported operand type(s) for -: 'set' and 'list'

Lastly, we can observe when multiple sets are compared for difference, python operates from left <- to right -> per-
forming a BINARY_SUBTRACT bytecode instruction at each step:

import dis
x = {1,2,3}
y = {3,4}
z = {2}
dis.dis("x - y")
"""
1 0 LOAD_NAME 0 (x)

2 LOAD_NAME 1 (y)
4 BINARY_SUBTRACT
6 RETURN_VALUE

"""

dis.dis("x - y - z")
"""
1 0 LOAD_NAME 0 (x)

2 LOAD_NAME 1 (y)
4 BINARY_SUBTRACT
6 LOAD_NAME 2 (z)
8 BINARY_SUBTRACT
10 RETURN_VALUE

"""

Method: difference_update(*other_sets):
• Description: Removes all elements from other_sets from this one

• Operator Equivalent: -=
• Notes: Is an augmented assignment, modifies the set in-place.

difference_update() is pretty much the same as difference with one core difference, this is an equlvalent
augmented operator. Below is the bytecode instructions to demonstrate difference() vs difference_update:

import dis
x = {1,2,3}
y = {2}
dis.dis("x.difference(y)")
"""
1 0 LOAD_NAME 0 (x)

2 LOAD_METHOD 1 (difference)
4 LOAD_NAME 2 (y)
6 CALL_METHOD 1
8 RETURN_VALUE

"""

dis.dis("x.difference_update(y)")
"""
1 0 LOAD_NAME 0 (x)

(continues on next page)

8 Chapter 1. Data Structures: Sets

Python Learning Materials, Release 0.0.1

(continued from previous page)

2 LOAD_METHOD 1 (difference_update)
4 LOAD_NAME 2 (y)
6 CALL_METHOD 1
8 RETURN_VALUE

"""

As shown above, the subtle difference only outlines the difference_update LOAD_METHOD in the latter, however
if we inspect the byte code when using the augmented operator:

import dis
x = {1,2,3}
y = {2}

dis.dis("x - y")
"""
1 0 LOAD_NAME 0 (x)

2 LOAD_NAME 1 (y)
4 BINARY_SUBTRACT
6 RETURN_VALUE

"""

dis.dis("x -= y")
"""
1 0 LOAD_NAME 0 (x)
2 LOAD_NAME 1 (y)
4 INPLACE_SUBTRACT
6 STORE_NAME 0 (x)
8 LOAD_CONST 0 (None)
10 RETURN_VALUE
"""

We observe the INPLACE_SUBTRACT instruction. Similarly to difference() any number of iterables can be
passed into the method as arguments, however when using the augmented operator equivalent, only types of set may
be provided. Another very important limitation is that augmented operators can NOT be chained together like x
- y - z can.

x = {1,2,3,4,5}
y = {4,5}
z = {3}

x.difference_update(y,z)
print(x) # {1,2}

"""
Because this is all in-place, here is roughly what happens:

x starts life as a new set of: {1,2,3,4,5}
x.difference_update(y) occurs, resulting in x modified in place to remove {4,5}
x.difference_update(z) occurs, resulting in x modified in place to remove {3}
x is now the same reference, with it's values modified: {1,2}
"""

(continues on next page)

1.5. Sets: Operations II - Intermediate 9

Python Learning Materials, Release 0.0.1

(continued from previous page)

Augmented operators are not allowed to be used on multiple targets
x -= y -= z
SyntaxError: invalid syntax

Augmented operators like normal operators, must be of type: Set
x = {1,2,3}
y = [3,4,5]
x -= y
TypeError: unsupported operand type(s) for -=: 'set' and 'list'

Method: discard(elem): Description: Attempt to remove elem from the set, if elem is not in the set, do nothing
Operator Equivalent: Not Applicable Notes: Similar to remove() however does not raise a KeyError Notes:
Returns None.

x = {1,2,3,4,5}
x.remove(6)
type(x)
`NoneType`

Method: intersection(*other_sets): Description: Computes the items all sets have in common. Operator
Equivalent: & Notes: Is not an augmented in place operation, creates a new set() of the results

Like all the other set methods and operations, intersection() has accept an assortment of iterables when using the
method format and when using the & operator, types must be Set. Creating the intersection of multiple sets moves
from left <- to right -> evaluating each one against the next and retaining elements which are common in both:

x = {1,2,3}
y = {4,5,6}
x.intersection(y)
x = {}
There are no comment elements in X that also are in Y

Let's find some common elements
x = {1,2,3}
y = {3,6,5}
z = {3,6,7}
x.intersection(y,z)
{3} - Why? x & y results in: {3}, y & z results in: {3}
Notice how `6` is not considered common here, because `x & y` creates only {3}␣
→˓before & z is compared.

The same example, using operators:
x = {1,2,3}
y = {3,6,5}
z = {3,6,7}
new = x & y & z
print(new)
{3}

This is explained easily by inspecting the bytecode, you can see X & Y is␣
→˓compared, then the new set & z
import dis
dis.dis("x & y & z")

(continues on next page)

10 Chapter 1. Data Structures: Sets

Python Learning Materials, Release 0.0.1

(continued from previous page)

"""
dis.dis("x & y & z")
1 0 LOAD_NAME 0 (x)

2 LOAD_NAME 1 (y)
4 BINARY_AND
6 LOAD_NAME 2 (z)
8 BINARY_AND
10 RETURN_VALUE

"""

As we previously mentioned for difference(), when dealing with an operator approach, types of Set will be
enforced by python, intersection(*others) can be any iterables.:

x = {1,2,3,4,5}
y = [3,4,5]
x & y # TypeError: unsupported operand type(s) for &: 'set' and 'list'
x.intersection(y) # {3,4,5}

Below is a simple venn diagram that demonstrates the intersection of the following python code:

x = {1,2,3,4}
y = {3,4,5,6}
2 items unique to x (1,2)
2 items common in x & y (3,4)
2 items unique to y (5,6)

Method: intersection_update(*other_sets): Description: Computes the items all sets have in common and
modifies x in-place. Operator Equivalent: &= Notes: x.intersection_update(y,z) updates ``x in-
place, it does not create a set.

Another augmented operator equivalent method, that updates the set with items in the other iterables (or sets if using
the augmented operator approach).

Updating x in place:

x = {1,2,3}
y = {2,3,4}
x &= y

1.5. Sets: Operations II - Intermediate 11

Python Learning Materials, Release 0.0.1

1.6 Sets: Operations III - Advanced

. . .

1.7 Sets: Frozensets

. . .

1.8 Sets: Miscellaneous

. . .

1.9 Sets: Summary

• frozenset is immutable, set is mutable.

• set contain unordered, non indexable distinct hashable immutable elements.

• Using empty set comprehension syntax will actually generate a dictionary.

• create set using set(), {1,2,3} or {n for n in range(10) if n % 2 == 0}.

• create frozenset using the frozenset() callable.

• user defined objects can be stored in sets by default, but are never considered equal.

• to add user defined objects to sets, implement __hash__ and __eq__.

• Set inherits from collections.abc.Collection which in turns inherits from Sized, Iterable, Container.

• Set permits many of its functionality through both method calls and operators.

• Set operator usage tends to be slightly faster due to not having to load & call a method.

• Augmented operators cannot be chained like normal operators: x -= y -= z is not permitted like x - y - z.

• x.difference(*other) removes elements in other, from x creating a new Set.

• x.difference_update(*other) removes element in other, from x in-place.

• x.discard(y) removes y from the set if it exists, if it does not it quietly does nothing.

12 Chapter 1. Data Structures: Sets

CHAPTER

TWO

DATA STRUCTURES: LISTS

2.1 Lists: Introduction

Python lists are mutable sequences that store ordered heterogenerous data. There no concept of duplicates in a list
and both hashable and non hashable elements can be stored.

2.2 Lists: Instantiation

There are three main ways to create a list in python:

• the list() built in.

• the [..., ...] square bracket syntax.

• list comprehensions, [char.upper() for char in "foobar"] -> [‘F’, ‘O’, ‘O’, ‘B’, ‘A’, ‘R’]

When creating a simple list, the fastest way to build one is using the [] syntax over the list() builtin. This is because
there is one less function lookup/call as demonstrated by the following bytecode, a brief benchmark of the list() vs []
is outlined below:

import dis

dis.dis("[]")
"""
1 0 LOAD_NAME 0 (list)

2 LOAD_NAME 1 (items)
4 CALL_FUNCTION 1
6 RETURN_VALUE

"""

dis.dis("list()")
"""
1 0 LOAD_NAME 0 (list)

2 LOAD_NAME 1 (items)
4 CALL_FUNCTION 1
6 RETURN_VALUE

"""

import timeit
timeit.timeit("[]", number=10_000_000)
0.15199436400143895

(continues on next page)

13

Python Learning Materials, Release 0.0.1

(continued from previous page)

timeit.timeit("list()", number=10_000_000)
0.549999200997263

The reality / performance is often a non factor, but to be as python as possible, avoid using list() when [] is an option.
List comprehensions are another beast altogether which we will discuss later, but for now her is a simple example:

x = range(1, 11)
odd_nums = [n for n in x if n % 2 == 0]
print(odd_nums)
[2,4,6,8,10]

2.3 Lists: MRO & Collections

As we previously touched on, list types in python are MutableSequences, what does this actually mean? Firstly let’s
derive all the subclassing (and virtual subclassing that) is occurring for the python list type. In order to achieve that,
we can use this handy function:

import collections.abc
import inspect

def build_hierarchy(col):
abcapi = vars(collections.abc).items()
return [v for k,v in abcapi if inspect.isclass(v) and issubclass(col, v)]

build_hierarchy(list)
"""
[collections.abc.Iterable,
collections.abc.Reversible,
collections.abc.Sized,
collections.abc.Container,
collections.abc.Collection,
collections.abc.Sequence,
collections.abc.MutableSequence]
"""

We can break down the list inheritance hierarchy (explicit and virtual subclasses) outlined above. As we mentioned,
python lists are Mutable and Sequences, let’s understand what each of these classes offer the list class:

2.4 Lists: Iterable

Python lists inherit behaviour and are iterable, via the collections.abc.Iterable abstract base class. This class
requires an abstractmethod implementation for __iter__. This is taken care for by the collections.abc.Iterator
inheritance for python lists, which simply returns self.

14 Chapter 2. Data Structures: Lists

Python Learning Materials, Release 0.0.1

2.5 Lists: Iterator:

Another part of the iterator protocol. collections.abc.Iterator implements a default __iter__ return itself
and enforces that subclass have an implementation for __next__.

2.6 Lists: Reversible:

The collections.abc.reversible abstract base class exposes a __reversed__ dunder method and itself is an
instance of Iterable.

2.7 Lists: append():

The .append() method of a list takes a single object and adds it to the tail of the list. If the object is iterable, it is not
unpacked, instead a single object is added, adding a tuple to a list via append((1,2,3)) will have a list containing
the tuple at the tail.

items = [1,2]
items.append((3,5,7))
items # [1,2, (3,5,7)]

2.8 Lists: clear():

Removes all elements from the list.

items = [1,2,3,4,5]
items.clear()
items # []

2.9 Lists: copy():

Creates a shallow copy of the list

2.5. Lists: Iterator: 15

Python Learning Materials, Release 0.0.1

16 Chapter 2. Data Structures: Lists

CHAPTER

THREE

DATA STRUCTURES: DICTIONARIES

3.1 Dictionaries: Introduction

. . .

3.2 Dictionaries: MRO Hierarchy

. . .

3.3 Dictionaries: Methods

. . .

3.4 Dictionaries: View Objects

. . .

17

Python Learning Materials, Release 0.0.1

18 Chapter 3. Data Structures: Dictionaries

CHAPTER

FOUR

DATA STRUCTURES: LINKED LIST

4.1 Linked Lists: Attempt

from __future__ import annotations
from typing import Optional
from typing import Iterable

class Node:
def __init__(self, value: int, ref: Optional[Node] = None) -> None:

self.value = value
self.ref = ref

def __repr__(self) -> str:
return f"<Node(value={self.value}, ref={self.ref})>"

def __str__(self) -> str:
return str(self.value)

class SingleLinkedList:
def __init__(self, iterable: Iterable[int] = None) -> None:

self.head: Optional[Node] = None
if iterable:

self.extend(iterable)

def __str__(self) -> str:
By nature a linked list is not aware of all of its nodes, so we must␣

→˓iterate
all node references.
start = self.head
s = ""
while start:

s += "-> " + str(start)
start = start.ref

return "[" + s + "]"

def append(self, value: int) -> None:
"""
Register a new node into the linked list, this node is

(continues on next page)

19

Python Learning Materials, Release 0.0.1

(continued from previous page)

appended to the tail of the linked list.
:param value: The integer to add
:return: `None`
"""
if self.head is None:

self.head = Node(value)
return

current = self.head
while current.ref:

current = current.ref
current.ref = Node(value)

def insert_left(self, value: int) -> None:
"""
Insert the new value to the left of the linked list, this
will push the current head forward once and register a
new node with `value` at the current head.
:param value: integer to insert at the head of the linked list.
:return: None
"""
if self.head is None:

self.head = Node(value)
return

new = Node(value, ref=self.head)
self.head = new

def extend(self, elements: Optional[Iterable[int]] = None):
"""
Extends the linked list by appending elements from the iterable.
:param elements:
:return:
"""
for element in elements:

self.append(element)

def clear(self) -> None:
"""
Erases all references from head in the linked list.
:return: None
"""
self.head = None

def reverse(self) -> None:
"""
Reverses the linked list in place.
:return: None
"""
previous, current = None, self.head
while current:

after = current.ref # store the next node temporarily
current.ref = previous # set the next node to the previous one

(continues on next page)

20 Chapter 4. Data Structures: Linked List

Python Learning Materials, Release 0.0.1

(continued from previous page)

previous = current #
current = after #

self.head = previous

10 -- 5 -- 8 --
5 -- 8 -- 10 --
#

linked = SingleLinkedList((5, 10, 15))
linked.append(100)
linked.append(250)
linked.append(500)
linked.insert_left(55)
print(linked)
linked.reverse()
print(linked)
linked.clear()
print(linked)

4.1. Linked Lists: Attempt 21

Python Learning Materials, Release 0.0.1

22 Chapter 4. Data Structures: Linked List

CHAPTER

FIVE

DESCRIPTOR PROTOCOL

5.1 Descriptors: Intro

Python descriptors allow objects to customise:

• Attribute lookup

• Attribute storage

• Attribute deletion

If you are new to descriptors, chances are you’ve already been using them as they are responsible for underpinning core
python built in functionality. Some things which are powered by descriptors and we will discuss later are:

• @property

• @staticmethod

• @classmethod

• Creating bound methods from function types

• Pythons super()

5.2 Descriptors: A Trivial Example

To get a feel for descriptors, we will create a rather trivial example, a descriptor that reverses a simple string value,
which importantly is computed each time the value is accessed. The important thing to understand at this point are
descriptors are their own class and they live as class attributes in other classes, let’s see it action:

class UpperAccess:
"""
This is a simple descriptor, at this point we are only
dealing with non data descriptors, so we will only
implement __get__. More on this later, keep reading!
but let's keep things simple for now.
"""
def __init__(self, word: str) -> None:

self.word = word

def __get__(self, obj, objtype = None):
return self.word.upper()

(continues on next page)

23

Python Learning Materials, Release 0.0.1

(continued from previous page)

class UsingUpperAccess:
"""
This is a simple class that uses a ``MyDescriptor`` instance.
Important note: The descriptor must live as a CLASS attribute
in another class.
"""
word = UpperAccess("foo")

clazz = UsingUpperAccess()
print(clazz.word) # 'FOO'

The important thing to remember here is, descriptors live as class attributes in other classes, when accessing
the clazz.word python first has a look in the clazz.__dict__ <instance dict> and then finds the descriptor in the
type(clazz).__dict__ <class dict>. The uppercased value does NOT live in either the instance or class dict, it is com-
puted on demand!

5.3 Descriptors: Compute on demand

To better explain the concept of value(s) being computed on demand, we will build a descriptor instance that based on
a working directory, can list the contents. For the sake of this article, we will use a tree structure like so:

example
colors

blue.txt
red.txt

numbers
one.txt
two.txt

In a nutshell, we have two subdirectories, colors and numbers, let’s write a descriptor that can read the contents of those
files, dynamically:

import os

class ContentsOf:
def __get__(self, obj, objtype=None):

it is the obj reference as a way back to the declaring class
return os.listdir(obj.dirname)

class RootDirectory:
files = ContentsOf()

def __init__(self, dirname):
self.dirname = "/tmp/example/" + dirname

colors = RootDirectory("colors")
numbers = RootDirectory("numbers")
colors.files # ["red.txt", "blue.txt"]
numbers.files # ["one.txt", "two.txt"]

Now that we understand a little better, how descriptors compute value(s) on demand, this example also exposes us to a
slightly deeper look into part of the ``descriptor protocol`.

24 Chapter 5. Descriptor Protocol

Python Learning Materials, Release 0.0.1

5.4 Descriptors: __get__

Part of the descriptor protocol, dunder __get__ is responsible for handling the _lookup_ part of the descriptor
outlined in our first paragraph. The secret to understanding how __get__ works is to understand this is class level
access.

class Descriptor:
def __get__(self, obj, objtype = None):

"""
:param self:

This instance of ``Descriptor``.

:param obj:
The instance of the class in which the descriptor was instantiated

:param objtype:
The (optional) own class `type` e.g `obj.__class__`

__get__() should return the ``computed`` value, or raise an␣
→˓``AttributeError``

"""
...

By default pythons __get_attribute__ will provide both arguments to the __get__ call, here is an example of the types
and value(s) accessible via __get__():

class D:

def __get__(self, obj, objtype=None) -> value
print(locals())
should really return here :)

class Instance:
d = D()

i = Instance()
i.d
{'self': <__main__.D object at 0x7f489e6f8340>,
'obj': <__main__.Instance object at 0x7f489e8078b0>,
'objtype': <class '__main__.Instance'>}
self -> the instance of `D`
obj -> the instance of `Instance`
objtype -> the class of instance `i.__class__`)`

5.4. Descriptors: __get__ 25

Python Learning Materials, Release 0.0.1

5.5 Descriptors: Managed Attributes

As we touched on originally in the form of pythons built in @property, a great example use case for descriptors is
managing access to instance data. The descriptor is assigned to a public attribute in the class dictionary (again not the
actual value, it’s computed on demand) and the actual data is stored as a private attribute in the instance dictionary.
descriptors __get__() and __set__() are called for public access. Up until now we have only covered the __get__() part
of the protocol, let’s dive into what are known as Data Descriptors (those which do not only implement __get__(), the
former are known as Non Data Descriptors. We will create a guarded variable that when accessed audits its access
through python logging:

import logging
import random
logging.basicConfig(level=logging.INFO) # Simple root logger to info

class LoggedAccess:
def __get__(self, obj, objtype=None):

private = obj._secure
logging.info(f"Accessed `secure`, resulted in: {private}")
return private

def __set__(self, obj, value) -> None:
This is new to us, more on that after!
logging.info(f"Setting `secure` to: {value}")
obj._secure = value

class Klazz:
secure = LoggedAccess() # Class dictionary, public attribute

def __init__(self, secure):
self.secure = secure

def shuffle_secure(self):
shuffles the letters in our secure word!
Importantly, calls both __get__ & __set__ of our descriptor.
new = list(self.secure)
random.shuffle(new)
self.secure = "".join(new)

k = Klazz("nice")
INFO:root:Setting `secure` to: nice
k.shuffle_secure()
INFO:root:Accessed `secure`, resulted in: nice
INFO:root:Setting `secure` to: inec

Looking closer at our example, we have derive a few things:

• All access to the managed access secure is logged

• k instance dictionary only holds the _secure attribute: vars(k) -> {‘_secure’: ‘inec’}

• Klazz class dictionary holds a instance of LoggedAccess: vars(Klazz) -> `. . . , ‘secure’, . . .

One glaring problem with this is that our _secure attribute is hardwired and tightly coupled into the LoggedAccess
descriptor, this creates a bottleneck where each instance can only have a single logged / managed attribute and the
name is completely unchangable. We will discuss a solution to that later but for now, let’s understand the second piece

26 Chapter 5. Descriptor Protocol

Python Learning Materials, Release 0.0.1

of the descriptor procotol, __set__.

5.6 Descriptors: __set__

Part of the descriptor protocol, dunder __set__ is responsible for handling the storage. Descriptors implement-
ing __set__() are automatically considered Data Descriptors and that implicitly changes some of the attribute access
flow, we will discuss that later. Even if a __set__ implementation has an exception raising place holder, it is enough to
qualify as a Data Descriptor.

class Descriptor:
def __set__(self, obj, value) -> None:

"""
Called to update an attribute on the instance of the owner class
Note: Adding a __set__() to a descriptor transforms it into a data␣

→˓descriptor
which has impacts in terms of the call flow, more on that later.

In typical setter fashion, __set__ should return `None`.
"""
...

Part of the descriptor protocol, dunder __get__ is responsible for handling the _lookup_ part of the descriptor
outlined in our first paragraph. The secret to understanding how __get__ works is to understand this is class level
access.

5.7 Descriptors: Customising names

When a class uses descriptors, it can inform the descriptor of which variable name was used, this can help us circum-
vent the issue we exposed during our managed attribute example. This is achieved through the dunder __set_name__
method, below is an example where multiple variables can become managed attributes without lots of coupling in the
Descriptor implementation itself:

import logging
logging.basicConfig(level=logging.INFO) # root logger configured to info

class LoggedAttr:
def __set_name__(self, owner, name):

This is new! it holds the key to decoupling multiple managed␣
→˓attributes

Let's store a public/private names on the actual Descriptor instance
logging.info("__set_name__ called!", locals())
self.public = name
self.private = "_" + name

def __get__(self, obj, objtype = None):
private = getattr(obj, self.private)
logging.info(f"Retrieving: {self.public} with value: {private}")
return private

def __set__(self, obj, value) -> None:
(continues on next page)

5.6. Descriptors: __set__ 27

Python Learning Materials, Release 0.0.1

(continued from previous page)

logging.info(f"Updating: {self.public} to: {value}")
setattr(obj, self.private, value)

class Car:
wheels = LoggedAttr()
color = LoggedAttr()

def __init__(self, wheels, color):
self.wheels = wheels
self.color = color

def remodel(self):
self.wheels = 3
self.color = "blue"

c = Car(4, "red")
INFO:root:Updating: wheels to: 4
INFO:root:Updating: color to: red
c.remodel()
INFO:root:Updating: wheels to: 3
INFO:root:Updating: color to: blue

As you can see, the same LoggedAttr class is now capable of supporting multiple attributes, all handled by the magic of
__set_name__ which aids in setting up attribute name specific values for public and private in the LoggedAttr instance
namespace. The important thing to understand here is that LoggedAttr instances are invoked at the class level, during
interpretation of the Car class, before a Car instance has been created in memory, the __set_name__ was already
invoked, twice by python. Let’s now understand __set_name__ a little better.

5.8 Descriptors: __set_name__

Dunder __set_name__ is called when the descriptors owning class is created. Note: This is not to be confused with
instantiating an instance of the owner class, remember classes themselves are objects in python.

A very important fact of the __set_name__ dunder is that it is only called as part of the type constructor. (to understand
more about type, refer to my article on metaclassess` in python3). This means that if a descriptor
is dynamically bolted on after the fact, ``__set_name__ would need to be explicitly called. This is
outlined below:

class Klazz:
...

descriptor = MyDescriptor()
Klazz.d = descriptor # This is not sufficient.
descriptor.__set_name__(Klazz) # Retrospectively, explicitly call __set_name__
→˓.

28 Chapter 5. Descriptor Protocol

Python Learning Materials, Release 0.0.1

5.9 Descriptors: __delete__

The final piece of the descriptor protocol, __delete__() is called to delete an attribute on an instance of the owner class.
Implementing a __delete__() is enough to qualify the descriptor as a Data Descriptor. This is outlined below:

class D:

def __delete__(self, obj):
self -> the instance of D
obj -> the instance of the owner class (where D() was instantiated␣

→˓at the class level)
print("deleting x")

class S:
d = D()

s = S()
del s.d
deleting x

5.10 Descriptors: Summary

• A descriptor is any object that implements:
– __get__, __set__, __delete__

• Optionally, descriptors can have a __set_name__ if they need to know:
– The class they where created.

– The name of the variable they where assigned too.

• __set_name__ is invoked even for classes which are not descriptors.

• Descriptors get invoked by the dot operator, during attribute lookup.

• Accessing a descriptor indirectly, the descriptor instance is not invoked but returned:
– vars(Klazz)[‘descriptor’] # returns the descriptor instance, but does not invoke __get__() etc.

– Klazz().__class__.x != Klazz().__class__.__dict__['x'].

• Descriptors only work as class variables, stored in an instance has no effect.

• The main motivation for descriptors is to allow class level attributes to have a hook into attribute access.

• In a normal setup, the calling class controls what happens during lookup.

• Descriptors invert the control and allow the data being accessed to have a say in the matter.

5.9. Descriptors: __delete__ 29

Python Learning Materials, Release 0.0.1

5.11 Descriptors: A Real use case

So far, we have developed relatively trivial uses for python descriptors. Now we will put together all we have learned to
implement a real use case. In this example we will build a Field descriptor that can validate data inputs, we will create
a BoundedInteger to validate integers in a reusable, strict manner:

from abc import ABC
from abc import abstractmethod

class Field:
def __set_name__(self, owner, name):

self.private_name = "_" + name

def __get__(self, obj, objtype = None):
return getattr(obj, self.private_name)

def __set__(self, obj, value):
self.validate(value)
setattr(obj, self.private_name, value) # noqa

@abstractmethod
def validate(self, value):

...

class BoundedInteger(Field):

def __init__(self, min: int = 0, max: int = 256):
self.min = min
self.max = max

def validate(self, value):
For the sake of this demo, we want fine grained error messages!
if not isinstance(value, int):

raise TypeError(f"Expected {value!r} to be an integer")
if not isinstance(self.min, int):

raise TypeError(f"Expected {self.min} to be an integer")
if not isinstance(self.max, int):

raise TypeError(f"Expected {self.max} to be an integer")
if not self.min <= value <= self.max:

raise ValueError(f"{value} was not between: {self.min}, {self.max}␣
→˓[inclusive]")

class RequiresValidation:
value = BoundedInteger(min=0, max=10)

def __init__(self, value):
self.value = value

Let's try it out!
RequiresValidation("foo")

(continues on next page)

30 Chapter 5. Descriptor Protocol

Python Learning Materials, Release 0.0.1

(continued from previous page)

"""
Traceback (most recent call last):
File "validation.py", line 47, in <module>
RequiresValidation("foo")

File "validation.py", line 43, in __init__
self.value = value

File "validation.py", line 13, in __set__
self.validate(value)

File "validation.py", line 30, in validate
raise TypeError(f"Expected {value!r} to be an integer")

TypeError: Expected 'foo' to be an integer
"""

RequiresValidation(7.5)
"""
Traceback (most recent call last):
File "validation.py", line 47, in <module>
RequiresValidation(7.5)

File "validation.py", line 43, in __init__
self.value = value

File "validation.py", line 13, in __set__
self.validate(value)

File "validation.py", line 30, in validate
raise TypeError(f"Expected {value!r} to be an integer")

TypeError: Expected 7.5 to be an integer
"""

RequiresValidation(-1)
"""
Traceback (most recent call last):
File "validation.py", line 47, in <module>
RequiresValidation(-1)

File "validation.py", line 43, in __init__
self.value = value

File "validation.py", line 13, in __set__
self.validate(value)

File "validation.py", line 36, in validate
raise ValueError(f"{value} was not between: {self.min}, {self.max}␣

→˓[inclusive]")
ValueError: -1 was not between: 0, 10 [inclusive]
"""

RequiresValidation(11)
"""
Traceback (most recent call last):
File "validation.py", line 47, in <module>
RequiresValidation(11)

File "validation.py", line 43, in __init__
self.value = value

File "validation.py", line 13, in __set__
self.validate(value)

File "validation.py", line 36, in validate

(continues on next page)

5.11. Descriptors: A Real use case 31

Python Learning Materials, Release 0.0.1

(continued from previous page)

raise ValueError(f"{value} was not between: {self.min}, {self.max}␣
→˓[inclusive]")
ValueError: 11 was not between: 0, 10 [inclusive]

"""

5.12 Descriptors: Advanced

Up until now we have skimmed the technical internals of descriptors. It is important to grasp the previous concepts
well before looking any deeper into the attribute lookup call flow etc.

We briefly touched on data and non data descriptors and mentioned how depending on which one the descriptor
implementation is ‘classified’ as, has impacts on the attribute lookup call flow. To recap:

• Descriptor protocol consists of __get__, __set__ and __delete__.

• Implementing any of the above qualifies.

• If only __get__ is implemented, it is known as a Non Data descriptor

• If __get__ + __set__ || __delete__ are implemented, it is known as a Data descriptor.

The default behaviour for attribute access is to get, set or delete an attribute from an object dictionary. for example:

• Firstly object_instance.attribute firstly looks for attribute in object_instance.__dict__

• Secondly, type(object_instance).__dict__

• Thirdly, resolving the mro of type(object_instance).

• If the looked up object is a descriptor, python may invoke the descriptor instead

• note: Depending on which descriptor protocols are implemented, mileage varies.

5.13 Descriptors: The Protocol

class MyDescriptor:

def __get__(self, obj, objtype = None):
...

def __set__(self, obj, value):
...

def __delete__(self, obj):
...

optional
def __set_name__(self, owner, name):

...

The above is really all there is too it. Data and Non Data descriptors vary slightly in how the overrides are calculated
in an instance dictionary. For example if a an instance dictionary has an attribute with the same name as the descriptor
the non data descriptor will take precedence, however if an instance dictionary has an attribute with the same name

32 Chapter 5. Descriptor Protocol

Python Learning Materials, Release 0.0.1

as a data descriptor, the dictionary attribute will take precedence. Let’s understand what this means with an example
below:

class DataDescriptor:
def __get__(self, obj, objtype = None):

print("Inside Data Descriptor Getter")

def __set__(self, obj, value):
print("Inside Data Descriptor Setter")

class NonDataDescriptor:
def __get__(self, obj, objtype = None):

Never called.
print("Inside Non Data Descriptor Getter")

class DataDescriptorOwner:
x = DataDescriptor()

def __init__(self, x):
self.x = x

class NonDataDescriptorOwner:
x = NonDataDescriptor()

def __init__(self, x):
self.x = x

d = DataDescriptorOwner(100)
Inside Data Descriptor Setter
d.x
Inside Data Descriptor Getter

n = NonDataDescriptorOwner(13)
n.x
13 <no __get__ or __set__ is called because a `non data` descriptor instance␣
→˓`x` takes priority.

In order to make a read-only descriptor, implement __set__ and raise an AttributeError. As we briefly touched
on earlier, defining a __set__ with an exception raising placeholder is sufficient to have the descriptor instance be
considered a data descriptor.

5.13. Descriptors: The Protocol 33

Python Learning Materials, Release 0.0.1

5.14 Descriptors: Invocation

34 Chapter 5. Descriptor Protocol

CHAPTER

SIX

VIRTUAL SUBCLASSING

6.1 Python Virtual subclassing

Unlike some other languages, python supports the concept of virtual subclassing. What exactly is virtual sub-
classing? To understand the concept let’s go back to pythons roots. I am sure you are familiar with the concept of duck
typing and perhaps if you have came from another language such as java, you will be familiar with the concept of an
interface. In python we are not overly caught up on the type of X, but more so how X behaves, in the simplest form
if it walks like a duck and quacks like a duck, chances are its a duck. Python does not support an official interface
argument, however more recently Protocols can be @runtime_checkable to aid with catching issues early.

To understand why we may need virtual subclassing, let’s take a simple example. Firstly we are tasked with developing
an airplane tycoon game. Our game consists of multiple things that can fly, to use the age old cliche:

• A Bird

• An Aeroplane

Turns out, you cannot load people into A Bird and fly them to a new destination, so we develop a few abstract base
classes to easily distinguish them

from abc import ABC
from abc import abstractmethod

class Plane(ABC):
@abstractmethod
def fly(self):

...

We make a simple plane

class MyPlane(Plane):
def fly(self):

print("Plane preparing to fly!")

Now we can check in our library function
Note: isinstance, isinstance checks against an ABC are even questionable..
def generate_flight(plane: Plane):

if not isinstance(plane, Plane):
raise TypeError("Not a Plane!")

plane.fly()

(continues on next page)

35

Python Learning Materials, Release 0.0.1

(continued from previous page)

Now, if we accidentally receive a Bird, we will handle the case
This will allow us to handle it gracefully rather than potentially
Blow up with some other weird errors later on in the program
class Bird:

def fly():
print("bird flying!")

generate_flight(Bird())
"""

TypeError Traceback (most recent call last)
<ipython-input-16-be9dc02ec41e> in <module>
----> 1 generate_flight(Bird())

<ipython-input-15-d59f577c3fde> in generate_flight(plane)
18 def generate_flight(plane: MyPlane):
19 if not isinstance(plane, MyPlane):

---> 20 raise TypeError("Not a Plane!")
21 plane.fly()
22

TypeError: Not a Plane!
"""
generate_flight(MyPlane())
Plane preparing to fly!

Excellent, but whats the point in virtual subclassing still? Let’s say in the near future some other fantastic library comes
along with a dozen of cool new planes, the problem is our generate_flight() function here is strictly prohibiting
non explicit subclasses of Plane. Let’s take a look at the library code

snippet from another library, not developed by you
boeing.py
class Boeing747:

def fly(self):
print("Boeing 747 preparing for travel!")

def repair(self):
...

Pretty simple huh, a nice shiny new Boeing that we could use in our system, except of course it does not adhere to our
explicit abstract base class:

from boeing import Boeing747

generate_flight(Boeing747())
"""
TypeError Traceback (most recent call last)
<ipython-input-23-24437f4c4918> in <module>
----> 1 generate_flight(Boeing747())

<ipython-input-20-8038f0273ec8> in generate_flight(plane)
18 def generate_flight(plane: MyPlane):
19 if not isinstance(plane, MyPlane):

(continues on next page)

36 Chapter 6. Virtual Subclassing

Python Learning Materials, Release 0.0.1

(continued from previous page)

---> 20 raise TypeError("Not a Plane!")
21 plane.fly()
22

TypeError: Not a Plane!
"""

Damn, we have coupled our library a little too tight and we don’t own the library code, what gives? Rather than monkey
patching and hacking around the inheritance of Boeing747, enter virtual subclassing. We can simple register
the third party code as a virtual subclass of our _interface_ (abstract base class) and the python interpreter will treat it
like it has actually subclassed it.

from boeing import Boeing747

Plane.register(Boeing747)
isinstance(Boeing747(), Plane) # True!
issubclass(Boeing747, Plane) # Also True!
generate_flight(Boeing747())
Boeing 747 preparing for travel!

Voila, we have successfully used third party code and ackknowledged explicitly that we accept it is an adaquate imple-
mentation of our interface.

Note: virtual subclassing should be used extremely sparingly, in reality the need for it is often miniscule. It is also
possible to automatically consider objects as instance/subclasses based on their interface and python does this internally
a lot in its collections.abc module, more on that in a separate post alter.

6.1. Python Virtual subclassing 37

Python Learning Materials, Release 0.0.1

38 Chapter 6. Virtual Subclassing

CHAPTER

SEVEN

ITERATOR PROTOCOL

7.1 Python Iterator Protocol

Here we out cover the iterator protocol in depth, both the newer version via __iter__ and __next__ as well as the
older protocol piggy backing off ``__getitem__` for sequence types.

In python if you have found yourself wondering, how does the for each loop work? This is where the iterator protocol
comes into play and making your own iterable user defined types is surprisingly straight forward. Personally the
terminology is more complex than the actual logic involved. Let’s try and break it down:

• collections.abc.Iterator extends collections.abc.Iterable

• All iterators are iterable

• Not all iterables are iterators

7.2 Iterator Protocol: Iterable ABC

collections.abc.Iterable is an abstract base class built into python that offers up the abstract __iter__ method
that should be implemented. Rule of thumb is that anything that is iterable when asked for an iterator will return
one.

@abstractmethod
def __iter__():

while False:
yield None

That’s it, iterables are really that simple, if something is iterable, it can return an iterator. It is an iterator` that
python actually uses to perform iteration. The built in ``iter() function calls an objects dunder
__iter__.

7.3 Iterator Protocol: Iterator ABC

Once you have grasped that iterables are _responsible_ for returning iterators, things start to make a lot more sense.
Next up is the collections.abc.Iterator abstract base class provided by python and there are three main core
things of note

• Iterator extends Iterable.

• Iterator implements a simple __iter__ to make Iterable happy, that returns itself.

39

Python Learning Materials, Release 0.0.1

• Iterator exposes a new __next__ abstract method.

As we can see from inspecting the mro of collections.abc.Iterator:

from collections.abc import Iterator

Iterator.__mro__
collections.abc.Iterator, collections.abc.Iterable, object)

In order to satisfy the interface from collections.abc.Iterable, it implements a very basic __iter__, which
returns self:

def __iter__():
return self

However, iterators themselves offer up a little extra, the interface exposes a new abstract method, known as __next__
and it is this implementation that when iterated over (for loops, map, list comps etc) that is used to exhaust the iterator,
one element at a time:

def __next__(self):
raise StopIteration

Something of note here, is unlike other languages, occasionally python uses exceptions to handle code logic / flow,
when an Iterator is exhausted it should raise a StopIteration Exception, this is how python knows internally that
there are no more values.

7.4 Iterator Protocol: __getitem__

There is another caveat, an object does not have to define the modern iterable/iterator interfaces to qualify as being
iterable, using dunder __getitem__ if an object can take an integer starting from 0, python will happily iterate over
that object as well, this is known as the older iterator protocol, however due to the symantics, when iterating using this
approach, an IndexError should be raised instead of the traditional StopIteration. Let’s demonstrated an example:

class ReversedEvenNumbers:
def __init__(self, max):

self.nums = [n for n in range(1, max+1)[::-1] if n % 2 == 0]

def __getitem__(self, index):
return self.nums[index]

for n in ReversedEvenNumbers(15):
print(n)

14, 12, 10, 8, 6, 4, 2

As you can see, we have created something we can iterate over, without actually implementing any of the iterator
(modern) protocol. Accessing an index out of range by default raises an IndexError so python gracefully handles that
in this scenario.

40 Chapter 7. Iterator Protocol

Python Learning Materials, Release 0.0.1

7.5 Iterator Protocol: Modern Example

We have learned a little bit about the older iterator protocol with an example, however let’s implement something a
little more modern. Now we will use the abstract base classes and create our own custom iterator and explain some of
the magic behind pythons virtual subclassing via abc.register and the __subclasshook__.

In this example, we will be creating a word iterator from a user provided sentence. Continue reading after this topic to
understand why our Sentence class does not have to explicitly inherit from collections.abc.Iterator (a little
sprinkle of python magic!):

A typical first approach (albeit naive)
class Sentence:

def __init__(self, sentence: str) -> None:
self.word_list = sentence.split()
self.index = 0

def __iter__(self):
return self

def __next__(self):
if self.index >= len(self.word_list):

raise StopIteration
value = self.word_list[self.index]
self.index += 1
return value

When starting out, you might think something like this is, pretty good. However there are a couple of caveats you
should be aware of, each time iter(iterable) is called, it should return a fresh iterator. What happens in this scenario
with the above implementation:

We need to create a fresh iterator, each time python calls __iter__ on our object. Let’s patch that up first:

Better! Each time we ask for an iterator from our custom RevisedSentence class, we can access all the values, but
can it be improved any more? We’ll, python supports a ton of built iterators / iterables, we can much easier piggy back
off those in this kind of scenario:

class SuperSentence:
def __init__(self, sentence: str):

self.word_list = sentence.split()

def __iter__(self):
return iter(self.word_list)

7.5. Iterator Protocol: Modern Example 41

Python Learning Materials, Release 0.0.1

7.6 Iterator Protocol: Virtual & Subclasshook

. . .

42 Chapter 7. Iterator Protocol

CHAPTER

EIGHT

SHALLOW & DEEP CLONING

8.1 Copying: Shallow Copy

Shallow copying a container in python builds a new instance of the container type, but the elements inside the container
are just references to the same objects in the container prior to copying. This means that if you shallow copy a list for
example, and update the index[0], both lists will be updated as they are the same object in memory, let’s try it out:

items = [1,2,3,4,5]
new_items = items.copy()
items[0] = 10
items [10, 2, ...]
new_items # [10, 2, ...]

8.2 Copying: Deep Copy

. . .

43

Python Learning Materials, Release 0.0.1

44 Chapter 8. Shallow & Deep Cloning

CHAPTER

NINE

CONTEXT MANAGERS

9.1 Context Managers: Introduction

Python context managers are what underpin the with statement in python and they are used for managing resources
which need to be closed and or cleaned up. The typical example with any introduction to context manager in python is
the open statement, to avoid leaving files open unnecessarily, python builtins support the following:

with open("myfile.txt", mode="w+") as file:
file.write("Hi there\n")

In order to create our own user defined context managers, there are typically two simple approaches, we will discuss
both options in depth throughout this post:

• contextlib.contextmanager (as a decorator around a generator function (yield).

• __enter__ and __exit__ dunder implementations in our own user defined classes.#

9.2 Context Managers: User Defined Classes

We touched briefly on the dunder __enter__ and __exit__ methods that can be used to turn a class into a context
manager.

• __enter__(self)

Enters the runtime context and returns either self or another object _related_ to the runtime context. The
with statement will bind this return value to the target specified in the as statement, a simple example:

from __future__ import annotations
from typing import Tuple

class Klazz:
def __enter__(self) -> Klazz:

print("Entering the runtime context...")
return self

class Klazz2:
def __enter__(self) -> Tuple[int, int, int]:

print("Entering the runtime context & returning something else")
return 100, 200, 300

(continues on next page)

45

Python Learning Materials, Release 0.0.1

(continued from previous page)

with Klazz() as k:
...

with Klazz2() as a, b, c:
...

• __exit__(self, exc_type, exc_value, traceback)

Dunder exit as you could have guessed, is responsible for closing a resource, clean up after the core with block has
been executed, called implicitly by python. There are a few things to know about dunder __exit__ and we will discuss
those here as well as some of the caveats of incorrectly implementing it.

Dunder __exit__ exits the runtime context and in provides exception information for any exceptions unhandled during
the runtime context, if no exceptions where raised during the runtime context, then all parameters passed to __exit__
will be None. This is outlined below:

The parameters passed in to handle the exception information is as follows:

• exc_type -> The type of the exception class raised.

• exc_value -> The exception value, e.g -> Raise ValueError(10) -> 10.

• traceback -> The traceback instance.

• Note: If no unhandled exceptions occurred, all three are None, making them Optional.

If we had to document those in terms of python types, it would look something like this:

from typing import Type
from typing import Optional
from types import TracebackType
from contextlib import AbstractContextManager

class K(AbstractContextManager): # This implements a self returning __enter__␣
→˓mixin.
def __exit__(self,

exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]

):
print(exc_type, exc_value, traceback)

with K(): as k:
...

None, None, None -> No exception was raised and unhandled!

with K() as k:
try:

raise ValueError(10)
except ValueError:

...
None, None, None -> Raised exception was handled.

with K() as k:
raise ValueError(100)

(continues on next page)

46 Chapter 9. Context Managers

Python Learning Materials, Release 0.0.1

(continued from previous page)

<class `ValueError`>, 100, <traceback object at 0x7f052c53d200> (unhandled␣
→˓exception).

A word of warning about __exit__, the return type of dunder exit is evaluated in a boolean context where truthy
values result in suppressing unhandled exceptions. Dunder __exit__ should also avoid re raising the exception which
is passed in by python when unhandled exceptions occur in the runtime context, this is the responsibility of the caller.

from contextlib import AbstractContextManager

class SuppressedExc(AbstractContextManager):
def __exit__(self, exc_type, exc_value, traceback):

return True # Truthy -> True, suppresses exceptions...!

with SuppressedExc() as s:
raise ValueError(100)

No exception raised here!

class NotSuppressedExc(AbstractContextManager):
def __exit__(self, exc_type, exc_value, traceback):

return False

with NotSuppressedExc() as ns:
raise ValueError(200)

"""
ValueError Traceback (most recent call last)
<ipython-input-7-55fb72d3f55a> in <module>

1 with NotSuppressedExc() as ns:
----> 2 raise ValueError(200)

3

ValueError: 200
"""

9.3 Context Managers: contextlib

Python ships out of the box with the contextlib module, which is a utility module for using various python context
managers as well as some context managers that can make using other non context managers easier.

9.3. Context Managers: contextlib 47

Python Learning Materials, Release 0.0.1

9.4 Context Managers: closing

The contextlib.closing context manager can be used to automatically close another object that itself is maybe not
necessarily a context manager. It simply takes the object instance and calls a .close() method on it, in a nutshell it would
be like this:

from contextlib import contextmanager

@contextmanager
def close_it(obj):

try:
yield obj

finally:
obj.close()

this allows us to write code like this for any object that has a .close() method but itself is not a context manager.

from urllib.request import urlopen

with close_it(urlopen("https://www.google.com")) as page:
for line in page:

print(line)

Even if an exception is raised here, the page will always have .close() invoked on it.

9.5 Context Managers: nullcontext

contextlib.nullcontext can be used to return a no-op, it is intended for use as a stand in for an optional context
manager. Based on some logic, e.g some if clause, you may use a nullcontext, a good example of such a use case
is:

from contextlib import nullcontext from contextlib import suppress

def function(ignore_exceptions: bool = False): mgr = suppress(Exception) if ignore_exceptions else
nullcontext() with mgr:

. . . # Do something, depending on the function arg, exceptions are suppressed!

Basically if you may want to run some sort of context manager or not based on some branched logic in your code,
nullcontext can be used as a standard in to fill the gap in some alternative case.

9.6 Context Managers: suppress

Often it is necessary to run some piece of code while ignoring an assortment of exceptions, simplifying a try:
except: pass kind of setup.

from contextlib import suppress

Approach 1
(continues on next page)

48 Chapter 9. Context Managers

Python Learning Materials, Release 0.0.1

(continued from previous page)

def try_something():
try:

do_some_operation()
except ValueError:

pass

def with_suppress():
with suppress(ValueError):

do_some_operation()

9.6. Context Managers: suppress 49

Python Learning Materials, Release 0.0.1

50 Chapter 9. Context Managers

CHAPTER

TEN

COLLECTIONS: NAMEDTUPLE

10.1 Namedtuple: Introduction

collections.namedtuple is a simple factory function for building more advanced tuples. Just like tuples they permit
indexing, are iterable and the main benefit they offer over a standard tuple is that attributes can be accessed by name.
Here is a basic introduction to named tuples:

from collections import namedtuple

Foo = namedtuple("Foo", "bar, baz", defaults=(100, 200))
print(Foo())
Foo(bar=100, baz=200)

As you can see from this small snippet, namedtuple also offer a nice dunder __repr__ implementation right off the bat.
We will discuss more throughout this article, especially the factory function arguments in great detail, but for now just
know that namedtuples create tuple subclasses with attribute access.

10.2 Namedtuple: Factory Function

The namedtuple(...) factory function offers a lot of additional arguments, often overlooked and to be honest, rarely
used, however for a full overview, we will discuss each argument and what it does with an example.

collections.namedtuple(
typename: str,
field_names: Iterable[str],
*,
rename: bool = False,
defaults: Optional[Any] = None,
module: Optional[Any] = None

)

51

Python Learning Materials, Release 0.0.1

10.3 Namedtuple: typename

typename is the new tuple subclass name. In order for pickling to be natively supported the typename should match
the name of the variable assigned to the tuple subclass. This is briefly shown below:

import pickle
from collections import namedtuple

Foo = namedtuple("Bar", "a,b,c", defaults=(200,300))
f = Foo(a=25)
print(f)
Bar(a=25, b=200, c=300)
pickle.dumps(f) # PicklingError: Can't pickle <class '__main__.Bar'>
Foo2 = namedtuple("Foo2", "a,b,c", defaults=(200, 300))
f = Foo2(25)
fbytes = pickle.dumps(f)
b'\x80\x04\x95 \x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\x94\x8c\x04Foo2\
→˓x94\x93\x94K\x19K\xc8M,\x01\x87\x94\x81\x94...."

10.4 Namedtuple: field_names

field_names is a sequence of strings or an individual string of the attribute names to be assigned to the underlying
tuple subclass. In the latter, attribute names are automatically resolved by splitting on either a comma, or whitespace,
named tuples do not have an underlying __dict__ instance (think __slots__) which is what allows them to compete
with standard tuples on memory.

from collections import namedtuple

f = namedtuple("f", ["one", "two", "Three"])
f2 = namedtuple("f2", "one two three")
f3 = namedtuple("f3", "one, two, three")

field names can be any valid python identifier except for anything starting with an underscore. named tuple has an
extra param we will discuss later rename= which is used for rewriting illegal field names automatically with a prefixed
underscore.

10.5 Namedtuple: rename

As previously outlined, rename works in tandem with the field_names argument in order to automatically rewrite name
violations with a prefixed _ positional names, where each violation is incremented += 1. For example:

from collections import namedtuple

One = namedtuple("One", "one, def, two, class, three, return", rename=True)
one = One(10, 20, 30, 40, 50, 60)
One(one=10, _1=20, two=30, _3=40, three=50, _5=60)

As you can see in the example, field names def, class and return are also python core builtin reserved keywords, these
have automatically been rewritten with _<n> for each violation in the sequence passed to field_names.

52 Chapter 10. Collections: namedtuple

Python Learning Materials, Release 0.0.1

10.6 Namedtuple: defaults

namedtuple defaults is an iterable of names to unpack into the fields when a value is omitted. By default, the values
are unpacked from <- right to left, so if there are three field names defined a,b,c and two defaults defaults=(100, 200)
then b == 100 and c == 200, a is a required field in this instance. defaults= can also be None in which case, all
field_name attributes are required.

from collections import namedtuple

Foo = namedtuple("Foo", "a,b,c", defaults=(10, 20))
f = Foo()
__new__() missing 1 required positional argument: 'a'
f = Foo(2000)
print(f) # Foo(a=2000, b=10, c=20)

10.7 namedtuple: module

namedtuple allows you to customise the module of the tuple subclass, if module= is assigned then the dunder
__module__ of the namedtuple will be set to that. __module__ is a writable field defining the name of the mod-
ule the function was defined in. This is shown below (using an interactive ipython shell where by default the module
would be __main__.

from collections import namedtuple

T1 = namedtuple("T1", "a,b,c", defaults=(1,2,3), module="foomod")
T2 = namedtuple("T2", "a,b,c", defaults=(3,2,1))

T1 has a custom module name assigned; let's inspect its instances:
T1().__module__ # foomod
T2 omits the module attribute from the sig
T2().__module__ # __main__

10.8 Namedtuple: misc

In order for namedtuple instances to be a core part of the python language, they need to retain some of the benefits of
standard tuple types. Namedtuples do not have a per instance dictionary (only a class one) this is how they are able to
retain the same memory footprint as normal tuples. They are of course also immutable and in order to support pickling
by default, the variable named assigned to the namedtuple instance should match that of the defined typename. These
are outlined below:

-- Memory Footprint
from sys import getsizeof
t = (100, 200, 300)
nt = namedtuple("Foo", "a b c", defaults=(100,200,300))() # Create the␣
→˓instance!
getsizeof(t) # 64 bytes
getsizeof(nt) # 64 bytes

-- Immutability
(continues on next page)

10.6. Namedtuple: defaults 53

Python Learning Materials, Release 0.0.1

(continued from previous page)

Immutability = namedtuple("Immutability", "one, two", defaults=(500, 600))
immutable = Immutability()
immutable.__dict__ # `Immutability object has no attribute __dict__`
immutable.one, immutable.two # (500, 600)
immutable.one = 2 # AttributeError: Cannot set attribute

-- Pickle capabilities
import pickle
Works = namedtuple("Works", "a")
w = Works(10)
pickle.dumps(w) # bytes no problem.

DoesntWork = namedtuple("Different", "a")
d = DoesntWork(20)
pickle.dumps(d) # PicklingError: Can't pickle <class '__main__.Different'>:␣
→˓attribute lookup Different on __main__ failed

10.9 Namedtuple: _make

The first of the three main methods that are bolted onto namedtuple instances. _make is a @classmethod. that uses
tuple.__new__ under the hood to create a new namedtuple instance from an iterable.

from collections import namedtuple

T = namedtuple("T", "a b c", defaults=(100,150, 200))
t = T() # T(a=100, b=150, c=200)
t2 = t._make((5,15,25)) # T(a=5, b=15, c=25)

10.10 Namedtuple: _asdict

The second of the three main methods that are bolted onto namedtuple instances. _asdict returns a dictionary of the
namedtuple instance attributes and corresponding values. As of python 3.8 the _asdict function returns a normal
dictionary, if you need the benefits of an OrderedDict consider instantiating one directly using this _asdict function:

from collections import namedtuple
from collections import OrderedDict

T = namedtuple("T", "a,b", defaults=(50, 100))
t1 = T()
mapping = t1._asdict()
{"a": 50, "b": 100}
order = OrderDict(t1._asdict())
OrderedDict([('a', 50), ('b', 100)])

54 Chapter 10. Collections: namedtuple

Python Learning Materials, Release 0.0.1

10.11 Namedtuple: _replace

The third of the three main methods bolted onto namedtuple instances is _replace. This allows you to create a new
instance of the tuple subclass, replacing fields of the existing instance with keys and respective values from the **kwargs
mapping:

from collections import namedtuple
T = namedtuple("T", "a,b,c", defaults=(12, 24, 36))
t = T() # T(a=12, b=24, c=36)
mapping = {"c": 4000}
t2 = t._replace(**mapping)
t2 # T(a=12, b=24, c=4000)

10.12 Namedtuple: _fields

The _fields instance attribute is used for a simple tuple of the namedtuple instance field names. This is useful for
introspection and new namedtuple instances containing a subset of an existing instances fields, this recipe is outlined
below:

from collections import namedtuple

T = namedtuple("T", "a")
t = T(100) # T(a=100)
T2 = namedtuple("T2", t._fields + ("b", "c"), defaults=(50, 60,70))
t2 = T2()
t2 # T2(a=50, b=60, c=70)

10.13 Namedtuple: _field_defaults

Namedtuple _field_defaults returns a mapping of fields to their respective default values:

from collections import namedtuple
T = namedtuple("T", "one, two, three", defaults=("three", "two"))
t = T(500)
t._field_defaults
{"two": "three", "three": "two"}

10.11. Namedtuple: _replace 55

Python Learning Materials, Release 0.0.1

56 Chapter 10. Collections: namedtuple

CHAPTER

ELEVEN

POSITIONAL AND KEYWORD ARGUMENTS

11.1 Function arguments: Introduction

Python offers three main ways to control function arguments, these are:
• positional only

• positional or keyword

• keyword only

Here is a short overview of what we will cover here:

def example(pos_only /, pos_or_kwd, *, kwd_only)
pos_only is positional only, order matters and cannot be passed via pos_

→˓only=1
pos_or_kwd like traditional args (without /, *) can be specified by␣

→˓order (pos) or keyword explicitly
kwd_only must be specified as kwd_only=10
...

example(1, 2, kwd_only=3) # Valid
example(1, pos_or_kwd=2, kwd_only=3) # Valid
example(1,2,3) # Invalid (kwd_only must be keyword only)
example(pos_only=1, 2, kwd_only=3) # Invalid (pos_only cannot be specified␣
→˓via keyword)

11.2 Positional Only Arguments

Arguments specified before a / in a function signature, indicate the argument should only be passed as a positional
argument (e.g without a keyword and order matters):

def one(a, b, c, /):
...

In the above example, a,b,c must be passed explicitly without a keyword argument.

57

Python Learning Materials, Release 0.0.1

11.3 Positional OR Keyword Arguments

By default, when either / or * is omitted from a function signature, arguments are considered positional_or_keyword
args, which means passing them positionally in order is completely valid and passing them via keyword explicitly is
also valid:

def one(a,b,c):
...

one(1,2,3) # Valid
one(a=10, b=20, c=30) # Valid

11.4 Keyword only Arguments

Arguments which follow a trailing * are considered keyword only arguments. These must be explicitly passed via a
keyword= call:

def one(a, b, /, * c):
...

one(10, 20, c=100) # Valid, c= must be explicit
one(10, 20, 30) # Invalid, TypeError: one takes two positional arguments by 3␣
→˓were given

58 Chapter 11. Positional and Keyword arguments

CHAPTER

TWELVE

REGULAR EXPRESSIONS

A regular expression is a pattern that is matched against a subject string, from left to right. Some common uses of
regular expressions (but not exhaustive) are:

• Replacing text within a string

• Capturing groups of information from a string

• Validating data, like a user name with multiple constraints

• much more. . .

12.1 A Trivial Example

As we previously just mentioned, a common use case for regex is validating user input against an assortment of different
constraints. To take the user name validation example, let’s look at how we might validate the following constraints on
user input:

• Must begin with a capital letter

• Must be at least 10 characters in length

• Must end with a number

• Can only be alphanumeric

This is a simple example, and the point is just to serve as an introduction to regular expressions. Let’s have a look at
how we would implement such a scenario in python and explain step by step what each part is doing. Don’t worry too
much about understanding to following as in this article we will be breaking down the core fundamentals of regular
expressions into digestable chunks. The aim by the end of it, is that you should be able to piece together complex
expressions for matching an assortment of scenarios:

import re # Import pythons regular expressions module

For demonstration purposes; we will build the string over multiple steps
for ease of understanding
pattern = r"" # starting point; empty raw string
pattern += "[A-Z]{1}" # First character MUST be an uppercased A -> Z character
pattern += "[a-zA-Z0-9]{8,} # Must then contain AT LEAST 8 additional␣
→˓characters /1[8+]1/
We have implicitly guaranteed so far that we have an uppercase char[0] and 8␣
→˓alpha numeric chars ending in a digit.
pattern += "[0-9]{1}" # Must end with a number

(continues on next page)

59

Python Learning Materials, Release 0.0.1

(continued from previous page)

putting it altogether then, pattern is:
pattern = r'[A-Z]{1}[a-zA-Z0-9]{8,}[0-9]{1}'
re.match(pattern, "ValidPassword2") # <reMatch object; spam=(0, 14), match=
→˓'ValidPassword2'>
re.match(pattern, "invalidPassword5") # None (no match due to missing initial␣
→˓capital)
re.match(pattern, "InvalidPassword") # None (no match due to missing ending␣
→˓digit
re.match(pattern, "Invalid5") # None, too short!

If you are experienced in regular expressions; you may be screaming that there are other or better ways to do exactly
this; often with regular expressions there are many ways to skin a cat, but for simplicity and to serve as an introduction,
this is a decent enough example. Again, if this is all new to you, focus on trying to understand it but not remember it,
we will be going in-depth shortly.

Note: Here we are reusing the pattern string, it is advisable when reusing a pattern to compile it into a re.Pattern
object using re.compile(pattern).

12.2 Regular Expr: Simple Matchers

In it’s simplest form, a regular expression is just a bunch of characters that we use to perform a search in a string, for
each snippet in this article we will be sharing an example of the syntax in action as well as an interactive link to dabble
and view it yourself.

Table 1: Simple Matcher
Pattern Subject String Expected Match
example This is a trivial example This is a trivial example
bar Foo bar Foo bar

Try Simple Matcher: https://regex101.com/r/tTZsZN/1

Typically regular expressions are case insensitive, (outside of using the i flag - more on that towards the end of the
article under the flags section).

import re
re.match("foo", "Foo will not match")

12.3 Regular Expr: Meta Characters

Meta characters are the bread and butter of regular expressions, and understanding them can make staring at a daunting
regular expression become somewhat demystified. Here is a brief summary of the core meta characters:

60 Chapter 12. Regular Expressions

https://regex101.com/r/tTZsZN/1

Python Learning Materials, Release 0.0.1

Table 2: Regex Meta Characters
Meta Charac-
ters

Description

. Period matches any single character, except a line break character e.g n
[] Character classes. Match any character contained within the brackets.
[^] Negated Character classes. Match any character NOT contained within the brack-

ets.
? Makes the preceding symbol optional.
+ Matches one or more of the preceding symbol.
* Matches zero or more of the preceding symbol.
{i, j} Braces. Matches at least i but no more than j repetitions of the preceding symbol.
(foo) Character group. Matches the characters foo in exactly that order.
| Alternation. Matches characters either before or after the symbol.
\ Escapes the next character, This allows using meta characters (and others) in their

literal sense.
^ Carat. Matches the beginning of the input (also has use in negative character

classes).
$ Dollar sign. Matches the end of the input. ^foo$.

12.4 Regular Expr: Meta -> .

The meta character . is used to indicate any single character. This has some exclusions for things like line breaks and it
is also worth noting that certain language re implementations can permit flags which also allow this character to match
even line breaks as well, we will discuss that here using pythons DOTALL flag.

Table 3: Meta Full Stop
Pattern Subject String Expected Match
.at I put a hat on my cat I put a hat on my cat
foo. foo1 with foo2 foo1 with foo2

Try Full Stop: https://regex101.com/r/Ii7Bj9/1

import re
pattern = r"foo."
re.findall(pattern, "foo1 with foo2")
["foo1", "foo2"]

Line breaks and pythons DOTALL flag example:

import re
foo = "foo\n"
re.match("foo.", foo)
No Match as `.` does not match on the new line
re.match("foo.", foo, flags=re.DOTALL) # Capture line breaks too!
< re.Match object; span=(0,4), match='foo\n'>

12.4. Regular Expr: Meta -> . 61

https://regex101.com/r/Ii7Bj9/1

Python Learning Materials, Release 0.0.1

12.5 Regular Expr: Character Classes -> [. . .]

Character classes in regex are used to denote literal values, so using meta characters inside them do not need escaped.
Hyphens can be used inside character classes to signify a range, just like we used in the initial example (username
validation). Character classes are denoted by the [<–>] square brackets. Order inside character classes does not
matter:

Table 4: Meta Character Classes
Pattern Subject String Expected Match
[Tt]he .at The cat The cat
[sMc]at The cat, sat on the Mat The Foobar, was foobar

Try Character Classes: https://regex101.com/r/8iSKB8/1

import re
pattern = re.compile(r"[sMc]at")
re.findall(pattern, "The cat sat on the Mat")
['cat', 'sat', 'Mat']

12.6 Regular Expr: Negated Character Classes -> [^. . .]

Similar to the Character Classes outlined previously, the negated character class matches anything except what is
defined inside the square brackets. We mentioned previously how the carat ^ symbol can denote the start of the string,
however it’s additional use case is here (as well as in lookarounds more on that one later..). Here we will find any words
that do NOT start with a letter:

Table 5: Meta Negated Character Classes
Pattern Subject String Expected Match
[^a-zA-Z]* NoMatch <no match>
[^a-zA-Z]* 5Matched 5Matched

Try Negated Character Classes: https://regex101.com/r/meqZgw/1

import re

pattern = re.compile(r"[^a-zA-Z].*")
re.match(pattern, "failed")
re.match(pattern, "5Passed")

Note: There are some short hand tricks with regex, which we will discuss later, things like d and w but for simplicity,
bear with me for now. You will also notice various methods of the python re module here, the difference between
re.search, re.match and re.findall will be outlined later on as well.

62 Chapter 12. Regular Expressions

https://regex101.com/r/8iSKB8/1
https://regex101.com/r/meqZgw/1

Python Learning Materials, Release 0.0.1

12.7 Regular Expr: Question Mark -> ?

The meta character ? indicates an optional preceding character (or group). This matches zero or more of the preceding
character.

Table 6: Meta Optional Repetition (?)
Pattern Subject String Expected Match
[T|t]?he he he
[T|t]?he The The

Try Optional Repetition (?): https://regex101.com/r/KQSs7f/1

import re
pattern = re.compile(r"[T|S]?he")
re.match(pattern, "The") # <re.Match object; span=(0, 3), match='The'>
re.match(pattern, "She") # <re.Match object; span=(0, 3), match='She'>
re.match(pattern, "he") # <re.Match object; span=(0, 2), match='he'>

12.8 Regular Expr: Plus -> +

The meta character + indicates one or more repetitions of the preceding character. Unlike the * there should be at least
one character. If used after a character class or capture group it finds the repetitions of the character set also. So for
example:

Table 7: Meta Optional Repetition (+)
Pattern Subject String Expected Match
a+bc aaaaaaaaaaaaaaaaaaaaaaaaaabc aaaaaaaaaaaaaaaaaaaaaaaaaabc
a+bc bc <No Match>

Try Required Repetition (+): https://regex101.com/r/sH0Bmf/1

import re

pattern = re.compile(r"a+bc.*")
re.match(pattern, "abcdef") # <re.Match object; span=(0,6), match='abcdef'>
re.match(pattern, "abc") # <re.Match object; span=(0,3), match='abc'>
re.match(pattern, "bc") # None

12.9 Regular Expr: Plus -> *

In a similar sense to the + repetition meta character, * indicates that the preceding character can be either optional or
infinite amount of the previous character. If used after a character class or capture group it finds the repetitions of the
character set also.

Table 8: Meta Optional Repetition (+)
Pattern Subject String Expected Match
a*bc aaaaaaaaaaaaaaaaaaaaaaaaaabc aaaaaaaaaaaaaaaaaaaaaaaaaabc
a*bc bc bc

12.7. Regular Expr: Question Mark -> ? 63

https://regex101.com/r/KQSs7f/1
https://regex101.com/r/sH0Bmf/1

Python Learning Materials, Release 0.0.1

As you an see above, the core difference from + and * here is that the pattern a*bc will match if a exists or not, a simple
demonstration of that is outlined below:

Try Optional Repetition (*): https://regex101.com/r/sH0Bmf/1

import re

star = r"a*bc"
plus = r"a+bc"
text = "bc"
re.search(plus, text) # NoneType (no match!)
re.search(star, text) # "bc" <re.Match object; span=(0, 2), match='bc'>

12.10 Regular Expr: Braces -> { }

Braces (also known as quantifiers) are used to apply constraints to the number of repetitions of the previous character
or group of characters, Let’s say we wanted to write some

64 Chapter 12. Regular Expressions

https://regex101.com/r/sH0Bmf/1

CHAPTER

THIRTEEN

CONCURRENCY: THREADING

13.1 Threading: Introduction

Before we start a deep dive into python threading, a core concept to understand is that python in the context of (CPython)
has a Global Interpreter Lock (GIL). Certain performance centric libraries are able to overcome this limitation but it
often involves moving into C extensions etc. When wondering if threading is the right answer, consider:

• Moving to Processing if you find yourself CPU bound and wish to benefit from multiple cores.

• Use threading if you find yourself IO blocked and want to open up some simultaneous execution of those tasks.

13.2 Threading: Overview

todo

13.3 Threading: Thread Local

65

Python Learning Materials, Release 0.0.1

66 Chapter 13. Concurrency: Threading

CHAPTER

FOURTEEN

PASS BY ASSIGNMENT

14.1 Pass By Assignment

In python, arguments are passed by assignment. Not to be confused with pass by reference or pass by value. The
rationale behind this is two fold:

• The parameter passed in by the caller is actually a reference to an object.

• Some data types are immutable (e.g int, string, bytes, tuple etc..)

What this means in practice is:

• If the caller passes a mutable object to a method, the method itself gets a reference

to that same object and it can be mutated as desired, however rebinding the reference inside the method will NOT
reflect to the outer scope (callers) reference. Rebinding and mutating will not reflect on the callers object.

• If the caller passes a mutable object, rebinding the reference will also not impact the

callers object and you will not be able to update the state.

14.2 Pass By Assignment: Mutable

mutable = [1,2,3]

def demo_mutable(data):
mutable.append(4) # This will modify the outer scope, the callers␣

→˓`mutable` will be updated after.

print(mutable)
[1,2,3,4]

def demo_rebinding(data):
remember data[-1] == 4 now.
data = [1,2,3,4,5,6,7]

print(mutable)
[1, 2, 3, 4] - outer scope `mutable` is not impacted due to rebinding inside␣
→˓`demo_rebinding(...)`

67

Python Learning Materials, Release 0.0.1

14.3 Pass By Assignment: Immutable

immutable = "string"

def demo_mutable(data):
data += "foo"

print(immutable)
'string'

def demo_rebinding(data):
data = "foo"

print(immutable)
'string'

68 Chapter 14. Pass By Assignment

CHAPTER

FIFTEEN

STRING METHODS

15.1 capitalize

Returns a copy of the string with s[0] capitalized and the rest (s[1:]) lowercased. Capitalize(. . .) accepts no arguments.

s = "hello world."
print(s.capitalize()) # `Hello world.`

15.2 casefold

Returns a copy of the string with a stricter lower case enforcing; by default lower() does not account for various code
points, such as ß, using casefold() is more aggressive and will convert such characters to ss. casefold() takes no argu-
ments.

s = "foo ß"
print(s.lower()) # `foo ß`
print(s.casefold()) # `foo ss`

15.3 center

Returns a copy of the string centered with a length of width, padded by a fillchar. The argument width is required,
fillchar is optional and by default is the ASCII space (code point: U+0020). By default no keyword args are supported,
width and fillchar are positional only. In the event that width is less than the len(s) then the original s string is returned.

s = "center me"
print(s.center(20, "#")) # `#####center me######`
x = "example"
print(s.center(30)) # ` example `

short width
s = "too short"
print(s.center(3)) # `too short`

69

Python Learning Materials, Release 0.0.1

15.4 count

Returns the number of non overlapping occurrences of sub in the string. count(sub, [,start[, end]]) can accept an
optional start and end argument to perform the check on a particular range, interpreted in slice notation e.g s[start:end].
count(. . .) accepts no keyword and only positional arguments.

s = "example of examples"
target = "example"
print(s.count(target)) # 2
print(s.count(target, 0, len(target)) # 1

Overlapping example
s = "ababab"
print(s.count("ab")) # 3 (non overlapping)
print(s.count("aba")) # 1 (You may think, `2` but infact it's `1`)

15.5 encode

Returns a new bytes version of the encoded string. As of recently encode(encoding=. . . , errors=. . .) via keyword
arguments is supported. By default encoding is utf-8 being the most prevalent in present times and errors is strict
however additional options are: (ignore, replace, xmlcharrefreplace and backslashreplace). User defined additional
ones can be provided if they are registered via the codec module using codecs.register_error(. . .). By default encoding
errors raise a UnicodeError. Note: Python as a language is unicode aware, this is demonstrated in the examples below:

s = "foo bar"
print(type(s.encode()) # `bytes`
print(s.encode()) # b'foo \xf0\x9f\x98\x8a bar'
print(len(s.encode())) # 12 bytes
`foo` as normal (3 bytes) + suffix whitespace (1 byte) (4)
Emoji is 4 byte UTF-8 (U+1F60A) (4 bytes)
`bar as normal` (3 bytes) + prefix whitespace (1 byte) (4)
3 + 1 + 4 + 1 + 3 (12 bytes).

Keyword args are supported.
s = "foobar"
print(s.encode(encoding="utf-8", errors="strict")) # b'foobar' (6 bytes).

15.6 endswith

Check if a string is suffixed with a particular substring. Optional start and end arguments can be provided which again
are interpreted in slice notation. The suffix parameter can also be a tuple of various suffixes to look for. endswith(. . .)
does not support keyword arguments, positional only.

s = "language:html"
print(s.endswith(("html", "php")) # True
print(s.endswith("guage", 0, 8)) # True

70 Chapter 15. String Methods

Python Learning Materials, Release 0.0.1

15.7 expandtabs

15.7. expandtabs 71

Python Learning Materials, Release 0.0.1

72 Chapter 15. String Methods

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

73

	Data Structures: Sets
	Sets: Instantiation
	Sets: Distinction
	Sets: Method resolution order
	Sets: Operations I - Basics
	Sets: Operations II - Intermediate
	Sets: Operations III - Advanced
	Sets: Frozensets
	Sets: Miscellaneous
	Sets: Summary

	Data Structures: Lists
	Lists: Introduction
	Lists: Instantiation
	Lists: MRO & Collections
	Lists: Iterable
	Lists: Iterator:
	Lists: Reversible:
	Lists: append():
	Lists: clear():
	Lists: copy():

	Data Structures: Dictionaries
	Dictionaries: Introduction
	Dictionaries: MRO Hierarchy
	Dictionaries: Methods
	Dictionaries: View Objects

	Data Structures: Linked List
	Linked Lists: Attempt

	Descriptor Protocol
	Descriptors: Intro
	Descriptors: A Trivial Example
	Descriptors: Compute on demand
	Descriptors: __get__
	Descriptors: Managed Attributes
	Descriptors: __set__
	Descriptors: Customising names
	Descriptors: __set_name__
	Descriptors: __delete__
	Descriptors: Summary
	Descriptors: A Real use case
	Descriptors: Advanced
	Descriptors: The Protocol
	Descriptors: Invocation

	Virtual Subclassing
	Python Virtual subclassing

	Iterator Protocol
	Python Iterator Protocol
	Iterator Protocol: Iterable ABC
	Iterator Protocol: Iterator ABC
	Iterator Protocol: __getitem__
	Iterator Protocol: Modern Example
	Iterator Protocol: Virtual & Subclasshook

	Shallow & Deep Cloning
	Copying: Shallow Copy
	Copying: Deep Copy

	Context Managers
	Context Managers: Introduction
	Context Managers: User Defined Classes
	Context Managers: contextlib
	Context Managers: closing
	Context Managers: nullcontext
	Context Managers: suppress

	Collections: namedtuple
	Namedtuple: Introduction
	Namedtuple: Factory Function
	Namedtuple: typename
	Namedtuple: field_names
	Namedtuple: rename
	Namedtuple: defaults
	namedtuple: module
	Namedtuple: misc
	Namedtuple: _make
	Namedtuple: _asdict
	Namedtuple: _replace
	Namedtuple: _fields
	Namedtuple: _field_defaults

	Positional and Keyword arguments
	Function arguments: Introduction
	Positional Only Arguments
	Positional OR Keyword Arguments
	Keyword only Arguments

	Regular Expressions
	A Trivial Example
	Regular Expr: Simple Matchers
	Regular Expr: Meta Characters
	Regular Expr: Meta -> .
	Regular Expr: Character Classes -> […]
	Regular Expr: Negated Character Classes -> [^…]
	Regular Expr: Question Mark -> ?
	Regular Expr: Plus -> +
	Regular Expr: Plus -> *
	Regular Expr: Braces -> { }

	Concurrency: Threading
	Threading: Introduction
	Threading: Overview
	Threading: Thread Local

	Pass By Assignment
	Pass By Assignment
	Pass By Assignment: Mutable
	Pass By Assignment: Immutable

	String Methods
	capitalize
	casefold
	center
	count
	encode
	endswith
	expandtabs

	Indices and tables

